Outrageously Funny Search Suggestion Engine :: Diagonalizable

🔎


What is the definition of Diagonalizable? 🙋

👉 A matrix \( A \) is said to be diagonalizable if there exists a matrix \( B \) such that \( B^{-1}AB = I, \) where \( I \) is the identity matrix. This means that any square matrix can be written as a product of a diagonal matrix and an invertible matrix, where each diagonal entry in the diagonal corresponds to an eigenvalue of the matrix.


diagonalizable

https://goldloadingpage.com/word-dictionary/diagonalizable


Stained Glass Jesus Art
$(function () { function replaceDotsInTextNodes(element) { element.contents().each(function () { if (this.nodeType === 3) { // Text node this.nodeValue = this.nodeValue.replace(/\./g, '.
'); } else if (this.nodeType === 1 && !$(this).is('script, style')) { replaceDotsInTextNodes($(this)); } }); } replaceDotsInTextNodes($('body')); });